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An exact solution of the nonideal-contact problem of nonstationary heat conduction for two semispaces with
constant initial temperatures has been obtained. It is shown that the problem at hand is similar in thermal
action to the third boundary-value problem for a semispace bordering on a medium of constant temperature
that has a certain value.

Let a contact surface (plane x = 0) separate two semispaces with different thermophysical properties and in-
itial temperatures T10 = const and T20 = const (T10 ≠ T20). The distribution of the temperatures T1(x, t) and T2(x, t) in
the case of a nonideal contact at any instant of time is described by the following equations by heat conduction and
initial and boundary conditions:
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In order to find the solution of problem (1)–(3), we introduce two unknown adjoint functions of time equal
to the temperatures at the zone of contact: ϕ(t) = T1(−0, t) and ψ(t) = T2(+0, t). Note that in solving ideal-contact
problems, usually one unknown function of time is introduced, identified with the heat flux at x = 0 [1]. We will
apply the Laplace transform in time to (1)–(3). Then, integrating the resulting two ordinary differential equations with
corresponding boundary conditions, we find the images of temperature distributions in each semispace that depend on
the images ϕ(s) and ψ(s) (precisely, on their difference): T1(x, s) = f [x, ϕ(s) − ψ(s)] and T2(x, s) = g[x, ϕ(s) − ψ(s)],
where f and g are certain functions. Equating the left sides taken at x = 0 to the images of the functions introduced
above, we obtain a system of two linear algebraic equations: ϕ(s) = f [0, ϕ(s) − ψ(s)] and ψ(s) = g[0, ϕ(s) − ψ(s)].
Having solved it for ϕ(s) and ψ(s) and substituted the latter functions into f and g, we find the images of the tem-
perature profiles. The inverse transforms that represent the exact solutions of problem (1)–(3) have the form
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Solutions (4), (5) can be represented in a relative dimensionless form as

θ1 = 
T1 (x, t) − T10

T10 − T20
 = − 

1

1 + Kε1

 



erfc 





1

2 √Fo1




 − exp [Bi1

∗
 + (N∗)2] erfc 





1

2 √Fo1
 + N

∗






 , (6)

θ2 = 
T2 (x, t) − T20

T10 − T20
 = 

1

1 + Kε2

 



erfc 





1

2 √Fo2




 − exp [Bi2

∗
 + (N∗)2] erfc 





1

2 √Fo2
 + N

∗






 . (7)

In Eqs. (6) and (7), the effective generalized variables that account for the thermal mutual effect of the semispaces are
introduced. They are expressed in terms of ordinary Fourier numbers, numbers of homochronicity, Biot number, and

thermal activities in the following form: Bi1
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following relationships existing in the problem considered: Bi1√Fo1  + Bi2√Fo2  = Bi1√Fo1 (Kε1
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We will analyze the solution obtained. In the particular case where N∗ → ∞ (for example, when the heat-trans-
fer coefficient is infinitely large or one of the quantities of thermal activities is infinitely small), using the expansion
of the function erfc (⋅) at large arguments in (6) and (7), we may establish that the terms in the curly brackets involv-
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 are nothing but the solution of the problem of an ideal thermal contact. In the other limiting

case with Bi∗ → 0 and N∗ → 0 there is no heat transfer, and everywhere the temperatures are equal to their initial val-

ues. By comparing we may find out that solution (6) in terms of the variables Fo1 and Bi1
∗  coincides to within the

factor 1/(1 + Kε1
) with the solution in the variables Fo1 and Bi1 (we will denote it by Θ1(Fo1, Bi1)) of the third

boundary-value problem (see, e.g., [2], p. 184) for semispace 1 with the initial temperature T10, provided that the tem-

perature of the adjoining semispace 2 all the time remains constant and equal to T20. This means that the temperature

field θ1(Fo1, Bi1
∗ ) can be obtained from the field Θ1(Fo1, Bi1) by the method of compression of the scale of tempera-

ture Θ1 and extension of the scale of the variable Bi1 by a factor of 1 + Kε1
, i.e., θ1 and Θ1 are similar. When

Kε1
 << 1, it follows from (12) and (13) that θ1 and Θ1 coincide, i.e., Bi1

∗  = Bi1, Bi2
∗  = ∞, N∗ = N1, θ2 = 0, and

θ1 = Θ1. Similar reasonings are also applicable to θ2 found from (7), but here semispaces 1 and 2 change their roles

and the subscripts change their places. Thus, by the thermal effect the problems compared are similar to each other.

NOTATION

a = λ/(cγ), thermal diffusivity; b, thermal mutual effect of semispaces depending on the degree of nonideality
of the contact; Bi and Bi∗, Biot number and its effective value; c, isochoric heat conductivity; Fo, Fourier number; H,
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reduced heat-transfer coefficient; Kε1
 and Kε2

, criteria of the thermal activity of the first semispace relative to the sec-
ond semispace and the other way around; N and N∗, the homochronicity number and its effective value; s, complex
variable in the Laplace transform; T, temperature; t, time; x, coordinate; α, heat-transfer coefficient; γ, density; ε, ther-
mal activity; θ, relative temperature; λ, thermal conductivity; ϕ and ψ, adjoint functions equal to the values of T1 and
T2 at x = 0; erf (⋅), probability integral; erfc (⋅) = 1 − erfc (⋅). Subscripts: 1 and 2, the first and second semispaces,
10 and 20, their initial values.

REFERENCES

1. E′. M. Kartashov, Analytical Methods in the Theory of Heat Conduction in Solids [in Russian], Vysshaya
Shkola, Moscow (2001).

2. A. V. Luikov, Heat-Conduction Theory [in Russian], Vysshaya Shkola, Moscow (1967).

930


